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ABSTRACT 

The flux density measured at satellite altitude with a fixed field of view radiometer differs from the true 
flux density reflected by the earth-atmosphere system within the field of view of the radiometer. This 
difference is due to angular response characteristics ofthe radiometer, solid angle effects due to geometry, 
and angular reflectance effects of the earth-atmosphere system. All of these effects lead to uncertainties 
in the interpretation of instantaneous earth radiation budget measurements. The differences between the 
true flux density and the measured flux density are shown to be significant when the field of view of the 
radiometer is large and when the atmosphere has a nonuniform, or spatially dependent, reflectance 
(albedo). A simulation experiment is described whereby the scene within the field of view of a nadir looking 
sensor is divided into a large number of equal area elements, each of which reflects radiation with one of 
two different reflectance models (corresponding to cloud-free and cloudy areas). The conditional mean 
values of the measured flux density, given values of the true flux density, are shown to differ significantly 
from the conditional means of the inverse problem, that of finding the mean value of the true flux density 
given a value for the measured flux density. The differences between the true flux density and the measured 
flux density are examined as a function of satellite altitude, field of view of the radiometer and solar zenith 
angle (including the effects of a terminator within the field of view) for both Lambertian and non-Lambertian 
reflectance models. 

1. Introduction 

Spatial imbalances between absorbed solar radia- 
tion and emitted thermal radiation are known to be 
a primary cause of energy transport by the atmos- 
phere and ocean. Observations of the components 
of the earth’s radiation budget have been made since 
the earliest earth orbiting satellites. These early 
satellite observations have primarily been used in 
phenomenological descriptions of the geographical 
and seasonal variation of the longwave and short- 
wave flux densities [see, e.g., Vonder Haar and 
Suomi (1971) or Raschke er al. (1973)]. More recent 
satellite data have been used in quantitative applica- 
tions by Oort and Vonder Haar (1976) and by Ellis 
et al. (1978) where the correlation between the 
radiation components and other parameters describ- 
ing the earth’s climate was tested. Earth radiation 
budget data have been used in parameterization 
studies of the earth’s climate based on energy 
balance climate models by Lian and Cess (1977), 
Coakley (1979) and North and Coakley (1979), among 
others. As these data are used in more sophisticated 
climate applications the need increases for realistic 
estimates of the errors associated with these data. 

The present effort is an attempt to understand and 
bound the errors associated with the transformation 
of satellite-measured shortwave flux densities into 

radiation flux densities leaving the top of the atmos- 
phere. Jacobowitz et al. (1979), in analyzing the 
Nimbus 6 Earth Radiation Budget (ERB) data, have 
considered the various sources of instrumental 
error. As a result of their analysis of instrumental 
errors it was possible to establish the globally aver- 
aged annual radiation balance of the earth-atmos- 
phere system to a high degree of accuracy. Globally 
averaged data collected from satellite-borne, flat 
plate radiometers do not require the transformation 
of satellite measurements to top of the atmosphere 
flux densities. However, geographical descriptions 
of the radiation parameters do require this trans- 
formation. Quantitative use of these data on a 
regional basis necessitates an analysis of the errors 
involved in this transformation process. 

The shortwave or solar component of the radiation 
budget has been selected for the present investiga- 
tion because of the lack of existing error analyses 
in this spectral region. The sun, as an external source 
of finite angular extent, can produce a strongly 
anisotropic and azimuthally dependent reflected 
radiation field for large solar zenith angles. The 
emitted longwave radiation, on the other hand, is 
azimuthally independent when the sources are im- 
bedded within a horizontally stratified atmosphere. 
Because of the particular problems involved in 
describing the complete angular properties of the 
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shortwave reflected intensities, the error analysis 
presented here considers only the shortwave spectral 
region. The same techniques can, of course, be ap- 
plied to the emitted longwave radiation case. 

In the present study the differences between the 
flux density measured at satellite altitude and the 
true reflected flux density within the field of view of a 
nadir looking satellite sensor are investigated. The 
differences between the true flux density and the 
measured flux density are examined as a function of 
satellite altitude and field of view for the case of a 
nonuniform, or spatially dependent, reflected flux 
density (or albedo). This is analogous to the situa- 
tion in which portions of the field of view are filled 
with high-albedo clouds while the remaining por- 
tions are cloud free and have much lower albedos. 
The effect of scene inhomogeneity is first investi- 
gated by using the random positioning of isotropically 
reflecting elements of differing albedos within the 
field of view. Finally, the compounded effects of 
scene inhomogeneity and the angular distribution 
of the reflected radiation field are investigated using 
realistic cloudy and cloud-free angular dependencies. 

2. Formulation of the problem 

The shortwave component of the earth radiation 
budget arises from incoming solar radiation which is 
reflected by the earth-atmosphere system. From 
measurements of the reflected radiation at satellite 
altitude it is desirable to determine corresponding 
values of the reflected flux density at the top of the 
radiatively active layers of the atmosphere, defined 
as the altitude above which the radiation field suf- 
fers negligible attenuation. Both the incident flux 
density as well as the reflected flux density are 
functions of location on the globe. If a satellite is 
located at a latitude @ and a local hour angle A, as 
illustrated in Fig. 1, the solar zenith angle at the sub- 
satellite point is given by 0,. In this figure the earth- 
atmosphere system is approximated by a sphere of 
radius R and the satellite is positioned at a height h 
above the surface of the sphere. If one assumes that 
the top of the radiatively active layers of the atmos- 
phere is at a height of 30 km above the earth’s sur- 
face, the height H of the satellite is given by H = h 
+ 30 km. It is convenient, for purposes of the present 
discussion, to define the location of an element of 
area on the surface of the sphere at a latitude @’ and 
a local hour angle A’ in terms of an earth central angle 
(Y and an azimuth angle 5 (see Fig. 1). These co- 
ordinates are based on the location of an element on 
the surface of the sphere with respect to the plane 
containing the sun, the center of the earth and the 
satellite. In terms of these coordinates and the solar 
zenith angle at the subsatellite point O,,, the cosine 
of the solar zenith angle (cos&) at any particular 
location on the globe can be written as 

NORTH POLE 

FIG. I. Schematic illustration of the earth-atmosphere system 
illuminated by the sun at solar declination angle 8 and viewed 
by a satellite at height h above the atmosphere. The angles 
and distances defined in this figure are discussed in the text. 

cos%” = cos@,, cow + sin@, since cosl;. (1) 

The reflected flux density F+(a, 5; 13,) at any point 
(a,<) on the surface of the sphere can be expressed 
as an integral of the reflected intensityI(a, 5; f$,, 13,$) 
and is given by 

F+(ff, 5; 60) 

where 0 is the angle between the direction of propa- 
gation and the local vertical and 4 the azimuth angle 
between the direction of propagation of the reflected 
radiation and the incident solar direction. The angles 
8 and 7r - 4 are illustrated in Fig. 1 for radiation 
propagating in the particular direction of the satellite. 
The plane albedo a(a, 5; 0,) of the earth-atmosphere 
system can be defined in terms of the reflected flux 
density by 

F+(a, 5; 00) = Foa(a, 5; 0,) coda, tie < 90" o 
I!& 2 90", 

(3) 
7 

where F. is the solar flux density incident on the top 
of the atmosphere. 

At any particular instant of time a satellite sensor 
is only capable of estimating the mean flux density 
within the instantaneous field of view of the sensor. 
For the case of a nadir looking radiometer with a 
circular field of view, the mean reflected flux density 
(F,,,,) within the field of view of the radiometer 
is given by 
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- H=600 km(E=1.08!30) 
--- H=833 km(E=1.1254) 

a (DEGREES) 

FIG. 2. Variation of x((Y,E) as a function of a for satellites at 
two different altitudes above the surface of the earth. When 
H = 600 (833) km the corresponding value of E = 1.0890 
(1.1254). 

277 ant 

c c F+(a, 5; 00)R2 sina dad< 

F 
Jo Jo 

true = 2n am 

i I 
R2 sina dad< 

0 a 

1 2n 

= 

I I 

am 

27T(l - cosct,) 0 
Ff(a, 5; f&J 

(J 

x since dad[, (4) 

where (Y, is the earth central angle measured from 
the satellite position to the edge of the instrument’s 
instantaneous Qeld of view. 

Since global radiation budget measurements can 
only be made at viable satellite altitudes (viz., 
H 2 500 km for stable orbits), the measured flux 
density at satellite altitude differs from the true flux 
density at the top of the atmosphere, given by (4). 
For a nadir looking satellite sensor which integrates 
the reflected intensity field with an angular response 
function of cosq, where 71 is the angle at the satellite 
between the satellite nadir direction and the direc- 
tion of an element of area on the surface of the sphere 
(see Fig. I), the measured flux density is given by 

F meas = 
I 

Z(a, 5; 80, 0, +I COSTI dw. (5) 
IFOV 

In the earliest earth orbiting satellites, for which 
satellite stabilization was a difficult task, omnidirec- 

tional sensors were used to infer the earth radiation 
budget components. Since these early satellites (such 
as Explorer VII) did not contain sensors with cosr) 
response functions, much interest revolved around 
converting these measurements to the vertical flux 
components at the satellite (see, e.g., Bignell, 1961). 
In Eq. (5) the integration is over the instantaneous 
field of view (IFOV) of the satellite sensor and dw 
is the solid angle subtended at the satellite by an 
element of area dA = R2 since dad< on the surface 
of the sphere. If one defines s as the distance from 
the satellite to an elemental area, as illustrated in 
Fig. 1, it immediately follows that 

x cosr) cos.0 since dad{. (6) 

Applying the law of cosines to the geometry 
illustrated in Fig. 1, the measured flux density can 
be shown to yield 

211 am 
F meas = 

I I 
4% 5; f%, 0, c> 

0 0 

x (E - COScu)(E cow - 1) 

(1 + 2 - 2e cosa)2 
sina dad<, (7) 

where 
R+h 

E=-. 
R 

(8) 

The factor 

COScu)(E cosa - 
x(ad = (y + E2 - ZE cosa)2 

1) 
(9) 

which appears in Eq. (7) is azimuthally independent 
and acts to weight the reflected intensity field in- 
cident on the satellite sensor such that equal-area 
reflecting elements of the earth-atmosphere system 
having equal intensities contribute differently 
depending on their location within the instrument’s 
field of view. 

Fig. 2 illustrates x(a,e) as a function of cx for satel- 
lites located at two different heights, H = 600 km 
and H = 833 km. These correspond to anticipated 
altitudes of two members of a three satellite Earth 
Radiation Budget Experiment (ERBE). It is clear 
from this figure that contributions to the measured 
flux density from elements of the atmosphere near 
the subsatellite point (small values of CX) are greater 
than contributions from similarly reflecting elements 
located near the edge of the instrument’s field of 
view (large values of (Y). Satellites at both altitudes 
will contain two shortwave fixed field of view radi- 
ometers, a medium field of view (MFOV) radiometer 
defined such that 

ffm = 5.0”, (10) 
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and a wide field of view (WFOV) radiometer defined 
such that the instrument views the entire earth- 
atmosphere system, horizon to horizon. From the 
geometric definitions given above, it can readily be 
shown that this is equivalent to a maximum earth 
central angle cy, given by 

%I = cos-’ (l/E). (11) 

For the two altitudes illustrated in Fig. 2, cr,,, = 23.33 
and 27.31” for H = 600 and 833 km, respectively. 

Although the measured flux density necessarily 
consists of radiation incident from all directions 
within the radiometer’s instantaneous field of view 
(i.e., 0 d (Y 8 a,,,), the majority of the signal arises 
from radiation incident from small values of cy (cf. 
Fig. 2). As a consequence, it would be possible to 
relate F,,,, to a true flux density defined as a mean 
flux density over an area smaller than the entire field 
of view. The results presented below (Section 4) as- 
sume the integration limits to be 0 G (Y G (Y,,~ for 
both F,,,, and Ftrue. The comparison between F,,,, 
and an alternative definition of Ftrue could be evalu- 
ated using the same techniques outlined below. 

The similarities and differences between the true 
flux density Ftrue and the measured flux density F,,,, 
are made clearer if we define a bidirectional re- 
flectance function p(a, 5; on, 6, 4) such that 

= r-‘F+Ca, 5; 4,)p(a, 5; 4,, 0, 4). (12) 

Substituting (12) back into (2), the bidirectional re- 
flectance function is seen to satisfy the normaliza- 
tion condition 

x cod sin0 dOd+. (13) 

The advantage of including the factor l/r in the ex- 
pression for the emerging intensity given above is 
that the bidirectional reflectance function equals 
unity when the reflected intensity is isotropic such 
that p((~, 5; &, 0, 4) = p(a, 5; 0,), independent of 8 
and 4. This assumption, known as Lambert’s law, 
is frequently made in radiation budget studies of the 
earth’s atmosphere and will be made for the results 
presented in Section 4a. Results for non-Lambertian 
reflectances will be presented in Section 4b. 

By using Eqs. (7), (9) and (12), F,,,, can be shown 
to yield 

x X(CY,E) sincu dad{. (14) 

The angles 13 and 4 which appear in the bidirectional 

reflectance function can be related to the angles a 
and 5 through appropriate coordinate transfor- 
mations. Thus it can be shown that 

sin8 = 
E since 

(1 + E2 - 2E cosa)“2 ’ 
(15) 

cos+ = 
cose() cosa - cosoo 

sin& sina ’ 
(16) 

where the 5 dependence is implied through the solar 
zenith angle &, defined by (1). 

Even if every position of the earth-atmosphere 
system within the radiometer’s field of view reflects 
radiation according to Lambert’s law, the differ- 
ences between Eqs. (4) and (14) are quite significant 
if the scene has a nonuniform, or spatially de- 
pendent, albedo. This difference, due to the strong 
cy dependence of x(a,e), may readily be understood. 
Consider the atmosphere within the field of view of a 
satellite sensor to consist of a large number N of 
equal area elements, the ith one of which has a plane 
albedo a((~, 5; 0,,) = ai. If the elements with the 
largest albedos are located near the subsatellite 
point, they contribute much more to the measured 
flux density than if they are located near the edge 
of the instantaneous field of view of the radiometer 
(see Fig. 2). The true flux density, however, is very 
similar for these two extreme situations since (4) 
does not contain any factor analogous to ~(a+). In 
general, the high-albedo areas, such as clouds, will 
be spatially distributed more evenly within the radi- 
ometer’s field of view such that the most probable 
value for the measured flux density will lie some- 
where between these two extremes. 

Fig. 3 illustrates the grid system used in the 
present investigation to assess the magnitude of this 
effect. In this study it is desirable to use agrid system 
such that each area element has exactly the same 
area and such that the outermost annulus extends 
to (Y,,,. This may be accomplished by subdividing 
the entire field of view into n, annuli and letting 
each annulus contain 2j - 1 elements, wherej = 1, 
2 * . 5 n, (see Fig. 3). In this way the total number 
of elements N is given by 

110 
N = C (2j - 1) = na2. (17) 

j=* 

With this choice of a grid system, the difference 
in earth central angle between successive annuli, 
given by Ltj+l - (~j, is approximately constant. 
Specifically, one can show that 

cosa2 = (na2 - 1 + coQr,J/n,2, (18) 

COScUj+l = COSaj - (2j + l)(l - COSCZZ), 

j = 2, 3, . . . , n,, (19) 



1266 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 37 

NORTH POLE 
I 

FIG. 3. Schematic illustration of the coordinate system used 
to simulate the variability of the reflecting atmosphere within 
the field of view of a satellite sensor. 

where o1 = o”, corresponding to the center of the 
spherical cap (j = I), and CU~+~ is the earth central 
angle corresponding to the outer limit of thejth annu- 
lus. The azimuth location of the first element in each 
annulus can obviously be arbitrary. Since each annu- 
lus contains an odd number of elements of equal 
area, we have chosen the azimuthal position of the 
elements such that they are symmetrically placed 
about the plane containing the satellite, the center 
of the earth and the sun, as illustrated in Fig. 3. 
This figure corresponds to the case of the wide field 
of view (WFOV) radiometer on the 600 km altitude 
satellite, where the height of the satellite has been 
exaggerated for clarity. In this case Q, = 23.33”, 
na = 11 and N = 121. 

By using (1) and (3), the measured flux density 
[Eq. (14)] and true flux density [Eq. (4)] can be 
written as 

F 
Fll 

meas = ; (COST, C Aiatp, 
1 

+ sin@, C BiUipi), (20) 

F 
FO 

tr”e = 2?7(1 - co%&) 

X (COSO, C CiUi + sin@, 1 Diai), (21) 
i z 

where 

Ai = x(a,e) cosa sina dad<, (22) 

5i+, 
I I 

cl;+, 
Bi = x(a,e) sin” (Y cost dad{, (23) 

6, ai 
Sill 

I I 

ai+, 
Ci = cow since dad{, (24) 

s, ai 
5t+1 as+1 

Di = 
I I 

sin’ (Y cost dad{. (25) 
(i at 

In these expressions (Y~, ai+*, ii and <i+l represent 
the range of earth central angles and azimuth angles 
of the ith elemental area (see Fig. 3). The summa- 
tions in (20) and (21) extend over all area elements 
for which the solar zenith angle at the center of the 
elements is less than 90”, while the terms ai and pi 
represent the plane albedos and bidirectional reflec- 
tance functions at the center of the ith area element, 
respectively. 

For the case of area elements which reflect radia- 
tion according to Lambert’s law, pi = 1 for all area 
elements and Eqs. (20) and (21) become 

F meas = 5 (cos0, ATa + sinO,BTa), (26) 
7T 

F 
FO 

true = 27r(l - COSCX,) 
(c0s0, CTa 

+ sin@, DTa), (27) 

where the superscript T indicates a transposed 
vector, the elements of a are given by ui, and the 
elements of A, B, C and D are given by (22)-(25). 
The vector a represents the albedos of the N differ- 
ent area elements and will be randomly selected as 
described in the next section. The elements of vec- 
tors A, B, C and D must be evaluated only once for 
each field of view and satellite altitude. These ele- 
ments can be analytically derived and the results are 
given in the Appendix. 

3. Method of solution 

We consider the earth-atmosphere system within 
the field of view of a nadir looking satellite sensor 
to consist of a large number N of equal-area ele- 
ments, each of which has either albedo ai = rl (cor- 
responding to cloudy regions) or albedo a, = r. 
(corresponding to cloud-free regions). All possible 
combinations of cloud-free and cloudy elements in 
Fig. 3 correspond to possible values for the meas- 
ured flux density F,,,, and the true flux density 
F true. It is convenient to represent a pair of possible 
outcomes (F,,,,, Ftrue) as a point in a two-dimen- 
sional space. Both of these variables (F,,a,,Ft,,,) 
are positive and must lie within a limited range of 
this two-dimensional space, depending on such things 
as the solar zenith angle 00, the altitude of the satel- 
lite (through the dependence on E) and the field of 
view of the radiometer. 
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Fig. 4 illustrates these limits for the case where 
individual elements of the earth-atmosphere system 
are assumed to reflect radiation according to Lam- 
bert’s law with either albedo r,, = 0.2 or albedo 
r 1 = 0.8. under the conditions that 0, = 0” and 
%I = 23.33”. This corresponds to the case of the 
WFOV radiometer on the 600 km satellite when the 
sun is positioned directly above the satellite. The 
region of Fig. 4 within the envelope represents the 
range of all possible outcomes of this experiment 
and is referred to as the sample space. A particular 
point within the sample space is physically realized 
by a potentially non-unique combination of cloud 
amount (i.e., number of elements with albedo r,) and 
positioning of the clouds. Any pair of possible out- 
comes (F,,,,a5,Ft,UC,) bears a relationship to the physi- 
cal variables of the problem and is referred to as 
an event. 

For the cases in which all elements of area within 
the field of view of the radiometer are illuminated 
by the sun (i.e., Ho c 90” - a,,!), as is the case in 
Fig. 4, the value of the true flux density F,,.,,, is 
primarily a function of the cloud amount while the 
large variability in the measured flux density F,,,, 
is due both to the amount of clouds and their posi- 
tion within the radiometer’s field of view. For a fixed 
value of F,,,,. the maximum value of F,,.,, occurs 
when the highly reflecting clouds are packed as near 
to the subsatellite point as possible while the mini- 
mum value of F,,,, occurs when the clouds are 
nearest to the edge of the instantaneous field of view 
(IFOV) of the radiometer. This variability, due to the 
x((Y,E) function illustrated in Fig. 2, is responsible 
for producing the relatively large size of the sample 
space illustrated in Fig. 4. The two points of inter- 
section of the upper boundary and the lower boundary 
of the sample space in Fig. 4 correspond to the 
values of F,,,, and F,,,.,, which occur when the en- 
tire atmosphere within the field of view of the radi- 
ometer has a uniform albedo (i.e., either all r,, or all 
rI as indicated by the right-hand scale in this figure). 
The largest variability in F,,,,, clearly occurs for the 
central values of Ftrur, a region where about half 
of the elements have albedo y0 and the other half 
have albedo r,. The reason for the slight differences 
between the mean albedo scale and the Ftru,.lFO scale 
in this figure is because the local solar zenith angle 
Ho, and hence incident flux density F,, COSH,,. varies 
with location within the radiometer’s field of view. 

The large ambiguity in the reduction of satellite 
measured flux densities (F,,,as) to a standard level 
(F,,,,) was first addressed by Bignell (1961), who 
observed that this ambiguity was associated with the 
location and intensity of scene inhomogeneities. 
Without doing a detailed simulation study as out- 
lined below, he noted that the boundary of the sam- 
ple space is large when the magnitude of inhomo- 
geneities is large (i.e., large r,lr,,) and when the 
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FIG. 4. Boundary of the sample space for a satellite at an 
altitude of 600 km which is viewing the earth-atmosphere sys- 
tern with a wide field of view radiometer. In this figure O,, = 0” 
and the atmosphere is assumed to consist of elements which 
reflect radiation according to Lambert’s law with either albedos 
0.2 or 0.8. 

altitude of the satellite is large compared to the 
standard level (i.e., large E). 

Although an event has a relationship to the physi- 
cal variables of the problem, the probability density 
of events within the sample space is not uniform. 
A joint probability density function J(x,y), de- 
scribing the probability that an event lies in the range 
x tos + tlx andv to! + Q, can be defined such that 

where x = F,,,, and J = F,,,, in this problem. The 
probability density functionf’(s,y), which is clearly 
zero outside the limits of the sample space, could be 
numerically derived by considering every possible 
combination of cloud-free and cloudy elements within 
the field of view of the radiometer. Denoting the 
number of cloudy elements by n and cloud-free ele- 
ments by N - II, it would be necessary to compute 
the (F,,,eas,Ft,.uu) outcome for a total of 

(29) 

unique combinations of cloud-free and cloudy ele- 
ments, where 
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FIG. 5. Schematic illustration of the joint probability density 
function for the same satellite altitude and geometry presented 
in Fig. 4, where the gray level scale ranges between white (zero 
probability) and black (maximum probability). 

(30) 

This would be a staggering task when representing 
the atmosphere within the field of view of the satel- 
lite sensor by a large number (N 2 100) of elements, 
as illustrated in Fig. 3. As a consequence, it is neces- 
sary to estimate the joint probability density function 
with the aid of statistical sampling techniques. 

If one assumes that the probability of an element 
being cloudy is independent of whether its neigh- 
boring elements are cloudy, the probability of ob- 
serving n cloud elements and N - n non-cloud ele- 
ments is given by the binomial distribution as 

P(n) = 
N 

0 
“(1 - p)i\‘-n, 

n 
(31) 

wherep represents the probability that an individual 
element is cloudy. In the results to be presented 
below it has been assumed that p = 0.5. The effect 
of this parameter will be discussed in Section 4. 
The sample space can be subdivided (partitioned) 
into N + 1 disjoint sets whose union is the sample 
space. These N + 1 sets represent the N + 1 possi- 
ble causes of an experimental outcome (i.e., the 
N + 1 different number of cloud elements which 
could exist within the radiometer field of view). 
Since we are interested in obtaining the joint proba- 

bility density function f(x,y) that the event (x,y) 
occurs, the probability that the event (x,y) occurs 
is given by the union of the probability that each 
disjoint event occurs. Thus we may write 

f(X,Y) = ww(x,Y 10) + PUMX,Y 11) + . . . 

= i fYn)f(x,y In>, (32) 
n=o 

where f(x,y In) represents the probability density 
function that the event (x,y) occurs, subject to the 
condition that the number of cloud elements n is 
certain to occur. The function f(x ,y (n) is referred 
to as a conditional probability density function (see, 
e.g., Hoel, 1971). 

The procedure which has been adopted in the 
present investigation is to systematically increment 
the number of cloud elements n, from which it is 
possible to determine the binomial probability den- 
sity function by using the recursion relationship 

P(n) = 
N-n+1 

P(n - 11, 
n 

n=l,2 ,..., N, (33) 

where P(0) = 2-j”. For any number n of cloud ele- 
ments it is possible to randomly vary the location of 
the cloud elements a large number M times, each 
time computing corresponding values of the meas- 
ured and true flux densities using either (26) and 
(27) or the more general form (20) and (21), until an 
accurate estimate of the conditional probability 
density function f(x,y In) has been determined. 
Making use of (32) and (33), the joint probability 
density function f(x,y) can thus be constructed. 
It is easy to show that f(x,y) must obey the nor- 
malization condition (28) if f(x,y In) is similarly 
normalized. 

For any random location of n cloud elements and 
N - n non-cloud elements it is possible to compute 
not only the (F,,as, Ftrue) outcome associated with 
this situation but also the outcome associated with 
the inverse arrangement, that for which each cloud 
element with albedo r, is replaced by albedo r. and 
each element with r. is replaced by rl. This cor- 
responds to a particular orientation of N - n cloud 
elements and n non-cloud elements and thus it is 
possible to determine f(x, y IN - n) at the same 
time that one is determining f(x,y (n). Since P(n) 
= P(N - n) for the case where p = 0.5, it is pos- 
sible to construct the functionf(x,y) by increment- 
ing n only from 0 to N/2. 

Fig. 5 illustrates the joint probability density 
function f(x,y) for the same satellite altitude and 
geometry presented in Fig. 4. In this figure the mag- 
nitude of the probability at a particular value of Ftrue 
and F,,,, is indicated by the degree of blackness, 
with the gray level scale ranging between white (zero 
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probability) and black (maximum probability). Due 
to the large dynamic range off(x,y) caused by the 
binomial probability density function P(n), it was 
necessary in producing this figure to replace P(n) by 
a Gaussian distribution with a larger standard devia- 
tion than P(n) in order to suppress this large dy- 
namic range. Fig. 5 thus represents f(x,y) quali- 
tatively, differing from the true density function 
quantitatively. 

Once the joint probability density function 
f(-u,y) has been determined. it is relatively simple to 
compute the conditional mean value of the measured 
flux density, given a value of the true flux density, 
as well as the conditional mean value of the true 
flux density, given a value for the measured flux 
density. It is the latter conditional mean value, 
designed ~l.~~~, which is of interest in earth radiation 
budget observations since one is interested in deter- 
mining the most probable value for the true flux 
density from a measurement at satellite altitude. 
It will be seen in the next section that the locus of 
such mean points, known as the curve of regression 
of y(F,,,,.) on s(F,,,,,,), differs substantially from a 
graph of the inverse problem, that of determining 
P,~,,, as a function of .v. Hoe1 (1971) shows that the 
curve of regression may be determined from the 
joint probability density functionf(x,y) by 

where the integral in the denominator of this ex- 
pression is frequently referred to as the marginal 
density functionf(x). It is similarly possible to esti- 
mate the conditional variance a%,, through the re- 
lationship 

! 
cc (Y - m,)2f(x,yWy 

2 0 

u,., = 

I 

m (35) 

f (x,y)& 
0 

The values of P,!,~ and c&, may be evaluated by 
expressions analogous to (34) and (35). 

4. Simulation results 

The method for determining the curves of regres- 
sion and sample variances described in the preced- 
ing section has been used in computations simulating 
both wide and medium field of view radiometers 
carried on board satellites orbiting at both 600 and 
833 km. Each of these four cases has been investi- 
gated as a function of solar zenith angle as well as 
for Lambertian and non-Lambertian reflectance 

models. A representative selection of these results 
is presented below. 

a. Larnbertian rejection 

When the individual area elements of the earth- 
atmosphere system reflect radiation according to 
Lambert’s law, the bidirectional reflectance function 
becomes unity for each area element and thus F,,,, 
and Flrue may be evaluated using (26) and (27). 
For consistency of presentation, all results for the 
Lambertian reflectances were obtained for the single 
situation for which the cloud-free regions have 
albedo r,) = 0.2 and the cloud-filled regions have 
albedo r1 = 0.8. Although these values were arbi- 
trarily selected, the results for different values of 
Y,) and Y, can easily be determined by simply scaling 
the results presented below. This is due to the linear 
dependence of F,,,,,, and Ftrue on the albedo vector 
a, as seen on examination of (26) and (27). 

Fig. 6a illustrates the conditional mean values of 
F,,,,,, given values of F,,.,,, for the case of the 
WFOV sensor on the 600 km altitude satellite when 
MO = 0”. This corresponds to one of the curves of 
regression for the joint probability density function 
schematically illustrated in Fig. 5, where the condi- 
tional means pslU were determined for 60 different 
y(Ft,“,) values. Since 0, = 0” is a situation for which 
all elements within the radiometer field of view are 
illuminated by the sun (i.e., the terminator does not 
cross the IFOV), the values of Ftrur are primarily 
determined by the number of cloudy elements n. The 
variability in F,,,,, at a given value of Ftrue, is due 
to the location of the clouds, with the most probable 
value of F,,,, being near the center of the sample 
space. The error bars illustrated in Fig. 6a represent 
the conditional standard deviations uslv and thus 
serve to indicate the magnitude of variability to be 
expected in F,,,, for any particular value of F,,,,. 

In a satellite experiment the true flux density is 
not known but rather is to be derived from the 
measurements. Fig. 6b illustrates the conditional 
mean values of F,,,,, given values of F,,,,, for the 
same satellite altitude and geometry presented in 
Fig. 6a. It is immediately apparent, upon examina- 
tion of this figure, that the conditional means pU,Z 
differ significantly from the conditional means pus12, 
presented in Fig. 6a. The curve of regression pUls 
has been determined from the joint probability 
density function for 60 different x(F,& values 
by making use of (34). For any value of F,,,,, it is 
possible that Ft,,,, is relatively small with the cloudy 
elements located near the subsatellite point as well 
as that Ftrue is large with the clouds located near the 
edge of the field of view (see Fig. 4). Since it has 
been assumed that the probability of there being a 
certain number of clouds n is given by the binomial 
probability density function where p = 0.5 [see 
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FIG. 6. The conditional means and standard deviations of 

(a) F,,,,, given values of F,,,,, and (b) F,,,, given values of 
F,,,,. This case corresponds to the WFOV radiometer on the 
600 km satellite when 0, = 0”. The limits of the sample 
space are also illustrated. 

Eq. (31)], the most probable value of Ftrue is shifted 
toward the Ftrue values corresponding to 50% cloud 
cover. If it had been assumed that p = 0.4, for 
example, the curve of regression illustrated in Fig. 

6b would be asymmetrically located within the sam- 
ple space and would reflect a most probable value 
of Ftrue shifted toward the F,,,, values correspond- 
ing to 40% cloud cover. The curve of regression 
illustrated in Fig. 6a would remain essentially un- 
altered, being relatively insensitive to the choice 
of p. The effect of the curvature of pUls can easily 
be deduced on examination of Fig. 5, where the mag- 
nitude of this curvature has been effectively reduced 
due to replacing P(n) by a Gaussian distribution 
with the same mean value N/2 (i.e., ply) but with a 
Iarger standard deviation than N”2/2 (i.e., [p(l 
- P)N]“‘. The error bars illustrated in Fig. 6b rep- 
resent the conditional standard deviations ~~~~ and 
thus serve to indicate the magnitude of variability 
to be expected in F,,,, for any particular value of 
F llltXS* These error bars are noticeably smaller in 
magnitude than the values of rslU illustrated in 
Fig. 6a. This is due, in part, to the strong dependence 
of Ftrue on the binomial probability density func- 
tion P(n). 

Fig. 7 illustrates the curve of regression (pUIs) 
and standard deviation (a,,,) of FLrue on F,,,, for 
the MFOV radiometer on the 600 km altitude satel- 
lite when 0, = 0”. The limits of the sample space 
for the MFOV radiometer are noticeably more re- 
stricted in size than the corresponding limits of the 
sample space for the WFOV radiometer (cf. Fig. 6). 
The slope of the median line through the end points 
of the sample space (dFtrUU/dFmraS))I=.~, designated m, 
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FIG. 7. The conditional means and standard deviations of 
F true, given values of F,,,,, for the MFOV radiometer on the 
600 km satellite when 0, = 0”. 
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is also increased over the corresponding slope for 
the WFOV radiometer. If the sample spaces were 
correspondingly narrow in both of these cases, the 
decreased slope for the WFOV radiometer would 
give it a decided advantage over the MFOV radiom- 
eter in interpreting earth radiation budget observa- 
tions. However, the reduction in size of the MFOV 
sample space leads to a less drastic effect of a vari- 
able reflectance such that there is a less dramatic 
shift of the curve of regression in Fig. 7 than there is 
in Fig. 6b. The curve of regression of F,,,, on Ftrue 
(pJ .) is not illustrated in Fig. 7 since it appears as a 
straight line passing through the end points of the 
sample space. 

The curves of regression (pyis) and standard devi- 
ations (Q~) of F,,,, on F,,,, for the 833 km altitude 
satellite are illustrated in Figs. 8 and 9. In these 
figures, Fig. 8 corresponds to the WFOV radiometer 
while Fig. 9 corresponds to the MFOV radiometer. 
The solar zenith angle 0, is again taken as 0” to en- 
able ready comparison with Figs. 6 and 7. The simi- 
larities and differences between Figs. 6b and 8 and 
between Figs. 7 and 9 are readily apparent, with one 
of the major differences being the slope of the median 
line through the end points of the sample space. 

For the cases in which all elements within the 
instantaneous field of view of a satellite sensor are 
illuminated by the sun (i.e., 0, s 90” - CX,,~), 
xi Bi = xi Di = 0, where the summations extend 
over all N area elements. For the case in which the 
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FIG. 8. As in Fig. 7 except for the WFOV radiometer on 
the 833 km satellite. 

t 

i 
0.8 

0.6 

g IA 
9 a 

FIG. 9. As in Fig. 7 except for the MFOV radiometer 
on the 833 km satellite. 

earth-atmosphere system has a uniform albedo CI, the 
measured flux density and true flux density given in 
(26) and (27) can be rewritten as 

F 
F,a cosoo 

meas = 1 Aiv 
7r 1 

F 
F,,a cos0, 

true = C Ci. 
2741 - COSCY,) i 

(37) 

These values for F,,,, and F,,,, must necessarily 
correspond to the end points of the sample space 
when a = 0.2 and a = 0.8. The value of the slope 
of the line which goes through these end points is 
thus obtained by dividing (37) by (36) and is given by 

1 
1 Ci 

z 
m= 

2( 1 - cosa,) C . 
(38) 

The value of the slope, given in this expression, is 
therefore a function of the altitude of the satellite 
(through Aj) and the field of view of the radiometer, 
but is not a function of the solar zenith angle 0,. The 
values of m for 0, s 90” - (Y,, together with values 
of (Y, and E, are given in Table 1 for each of the four 
cases considered in this investigation. 

For the cases in which the terminator crosses the 
field of view of the radiometer, xi Bi and xi Di are 
no longer equal to zero, since the summations ex- 
tend only over the area elements for which the solar 
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TABLE I. Values of a,,,, l and 171 for the two satellite altitudes 
and two satellite sensors considered in this investigation. 

Altitude 

(km) Sensor %, E ,,I * 

600 MFOV 5.00 1.0890 2.13407 
600 WFOV 23.33 1.0890 1.14.545 
833 MFOV 5.00 1.1254 3.19849 
833 WFOV 27.31 1.1254 1.20986 

* The values of the slopes given here are applicable for all 
solar zenith angles 80 G 90” ~ a,,,. 

zenith angle at the center of the elements is less 
than 90”. In this case the slope m is given by 

1 
m= 

2( 1 - cosa,,,) 

cosOn 1 Ci + sin@, 1 Di 

X 
l I 

cos@, 1 Ai + sin@,, 1 Bi ’ 
(39) 

1 I 

and is thus a function not only of the altitude of the 
satellite and field of view of the radiometer but also 
the solar zenith angle 0,). The values of the reciprocal 
of these slopes (l/r?? ) when C-J,),, 3 50” are illustrated 
in Fig. 10 for all four cases considered in this in- 
vestigation. It was necessary in this figure to illus- 
trate the reciprocal of the slopes due to the fact that 
m approaches x at large values of 0, for the WFOV 
radiometers. 

In interpreting measurements from the Earth 
Radiation Budget (ERB) experiment aboard the 
Nimbus 6 satellite, Jacobowitz et ~1. (1979) related 
the measured flux density to a true flux density 
through a simple application of the inverse square 
law. This is equivalent to letting F,,,, = 2Fmras 
(i.e., m = E’). As seen on examination of Table 1 
for the WFOV sensors, there are systematic differ- 
ences on the order of 3.5-4.5% (5.5% for the alti- 
tude of Nimbus 6, H = 1100 km) between the true 
flux density inferred from the inverse square law 
transformation and that inferred under the assump- 
tion of a uniform earth-atmosphere albedo, even 
when the reflected radiation is isotropic. These dif- 
ferences are naturally altered greatly for large solar 
zenith angles due to the terminator crossing the field 
of view of the radiometer (see Fig. 10). The inverse 
square law transformation, as applied by Jacobowitz 
et ~1. (1979), is valid strictly for a uniform reflected 
flux density, rather than a uniform albedo. Although 
the inverse square law transformation systematically 
obvrestimates the true flux density by 3.5-4.5% 
(when the scene has a uniform albedo), it wzder- 
estimates the mean albedo by only -1% (if one as- 
sociates the true flux density with the incident solar 
flux density F,, cosC& at the subsatellite point). 

An alternative approach to interpreting WFOV 

earth radiation budget observations is to define the 
albedo as the ratio of the measured flux density to 
that which would have been measured if the earth- 
atmosphere system was a 100% diffuse reflector. 
Using (20) and (39), it follows that this definition 
leads to 

F 
u = n-[COST,, 1 A, + sin@, 1 Bile17 

I I n 

E.z 27T(l - coscq,,)m[cosO, C Ci 

FIlWX + sin@,, C Di]-’ - . (40) 
I Fn 

This is entirely equivalent to Ftruc = mFmras and 
thus does not lead to the same kind of biases as the 
inverse square law transformation providing the 
scene has a homogeneous albedo. The ambiguities 
associated with spatial inhomogeneities in the 
albedo of the scene are obviously not removed by 
any such approach. 

In addition to the slope of the median line through 
the sample space, the size of the sample space is 
somewhat reduced for the higher altitude satellite. 
The curves of regression in Figs. 8 and 9 are logical 
extensions of the curves of regression in Figs. 6b and 
7 and are what one should expect based on the re- 

1.07 I e,l.O 

I 
t 

WFOV SENSOR 

J ‘-----------. 
0.8! 

c 

0.6; I 
5 i. 

I 
0.4, MFOV SENSOR 

-H=6OOkm I 
---w-H = 833 km ! 

!1.5 

12.0 E 

- 2.5 

4 3.0 

LO 

15.0 
i 

o.ojb- -$l~~~~ 70 80 90 100 110 120 

@O 

FIG. 10. Variation of l/m as a function of 0, showing the 
effects of the terminator crossing the field of view of the four 
satellite sensors listed in Table 1. 



JUNE 1980 MICHAEL D. KING AND ROBERT J. CURRAN 

suits for the 600 km satellite and the differences in 
the sample spaces between H = 833 and 600 km. 

When the solar zenith angle 0, exceeds 90” - a,, 
the curves of regression, in addition to the boundary 
of the sample space, begin to take on different ap- 
pearances than when 0, s 90” - a,,,. Figs. 1 la and 
1 lb illustrate the curves of regression pZ+, and 
p,, s for the case of the WFOV radiometer on the 
600 km satellite when 0, = 80”. The only difference 
between Figs. 6a and 1 la and between Figs. 6b and 
I lb is the solar zenith angle at the subsatellite point, 
with the most drastic difference being in the curve of 
regression (Pi,,,,) of F,,,, on Ftrue. For a given value 
of the true flux density Ftrue, the most probable value 
of the measured flux density is systematically shifted 
away from the straight line of slope m which goes 
through the end points of the sample space. This 
effect only becomes evident for large values of 0, 
and is associated with the fact that the terminator 
crosses the field of view of the radiometer. The curve 
of regression (1~~~~) of Ftrue on F,,,,, which is of 
interest for satellite remote sensing, appears similar 
for all values of 0, within the limits of the appro- 
priate sample space. The fact that ps,,,, is not a 
smooth function of-y in Fig. 1 la is due to the fact that 
f(x.y In) has been estimated by randomly vary- 
ing the location of the cloud elements a large number 
M times (A4 = 12 800 in this case), rather than 
determiningf(x,y In) for each possible combination 
of cloud-free and cloudy elements, given by (34). 
For the cases illustrated in Figs. 6-9, in which the 
terminator does not cross the radiometer’s field of 
view, it was sufficient to let A4 = 1600. 

b. Non-Lambertian rejection 

In order to examine the effects of non-isotropic 
reflection by the earth-atmosphere system, radia- 
tive transfer calculations have been performed for 
cloud-free and cloudy models separately. In lieu of 
making time-consuming wavelength calculations, as 
Dave (1978) has done for four realistic cloud-free 
atmospheric models, we chose for this study to make 
computations at a single wavelength of incident 
illumination, given by A = 0.5550 pm. This wave- 
length corresponds nearly to the peak of the incident 
solar spectrum and was the wavelength used in the 
recent theoretical sensitivity study by King and Her- 
man (1979). The methods used to calculate the dif- 
fuse radiation field are described by Herman and 
Browning (1965) and Herman et al. (1971) for the 
cloud-free models and Hansen (1969) for the cloudy 
models. These computations were required for the 
solar zenith angle (19,), observational zenith angle 
(8) and azimuth angle (4) combinations of each of 
the illuminated area elements within the field of view 
of the radiometer. These angles in turn depend upon 
the altitude of the satellite, solar zenith angle at the 
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600 km satellite when 0, = 80”, and is to be compared with 
Fig. 6. 

subsatellite point and field of view of the radiom- 
eter, and may readily be determined through applica- 
tion of (I), (15) and (16). Once the albedo and bi- 
directional reflectance functions for each model 
have been determined, F,,,, and F,,,, may be evalu- 
ated using (20) and (21). 
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for the non-Lambertian and Lambertian reflectance models 
for the case where the mean alhedos for the homogeneous 
scenes are the same. 

Since Ftrue (and hence the mean albedo of the 
scene) depends only on the albedos of the individual 
area elements and not on their bidirectional re- 
flectance functions, an attempt was made to choose 
the appropriate radiative transfer parameters such 
that the mean homogeneous cloud-free and cloudy 
albedos were 0.2 and 0.8, respectively. This was to 
enable ready comparison with the Lambertian cases 
presented previously (viz., Figs. 6-9 and Fig. 11). 
For the four 0, = 0” cases (two satellite altitudes 
and two fields of view), the geometry is such that 
4 = 180“ for all area elements and p, and ai are only 
annulus dependent. For these cases the cloud-free 
model consisted of a vertically inhomogeneous 
atmosphere consisting of Rayleigh (molecular) scat- 
tering with an optical thickness 7n = 0.0947 and 
particulate scattering and absorption with an optical 
thickness T,,, = 0.1000. The phase matrix of the 
particles is computed from Mie theory and is thus a 
function of the complex refractive index and size 
distribution of the particulates, the shape having 
been assumed spherical. For the computations used 
in this investigation, the refractive index was 
m = 1.54 - O.Oli, while the size distribution was 
assumed to be that proposed by Junge (1955) with 
Y* = 3 and the radii extending from 0.02 to 5.00 pm. 
Absorption by atmospheric ozone has been neglected. 

In order to have an earth-atmosphere albedo of 
-0.2 for this atmospheric model and for the range of 

solar zenith angles which occur when 0, = o”, it 
was necessary to assume that the bottom boundary 
of the atmosphere reflects radiation according to 
Lambert’s law with an albedo of 0.18. The effect 
of this earth-atmosphere system on the reflected 
intensity field, and hence on the bidirectional 
reflectance function, is the most significant for 
large zenith angles (0 b 60”). Since these only occur 
for large values of the earth central angle LY, posi- 
tions for which the X(CY,E) function is relatively small, 
the effect on the measured flux density is quite 
small. 

The cloudy model, on the other hand, consisted of 
a vertically homogeneous atmosphere consisting 
only of scattering by cloud droplets. The refractive 
index of the droplets was taken as 1.33-O.OOi. 
while the droplet size distribution was the fair 
weather cumulus model defined by Hansen (1971). 
This distribution is a variation of the gamma dis- 
tribution with a mean effective radius of 5.56 pm, 
where the mean effective radius differs from the 
simple mean radius in having the cross-sectional 
area of the droplets included as a weighting factor. 
For the wavelength and refractive index used in this 
investigation. this distribution is characterized by 
having an asymmetry factor g = 0.8516. The 
computations were obtained by using the scalar ver- 
sion of the doubling method [for details see Hansen 
(1969)] with no underlying surface albedo. In order 
to have an earth-atmosphere albedo of -0.8 for this 
atmospheric model and for the 0, = 0” cases, a 
cloud optical thickness T, = 52 was selected. 

Fig. 12 illustrates the conditional mean values of 
F tru,* 1 given values of F,,,,, for the case of the 
MFOV sensor on the 600 km altitude satellite when 
Cl,, = 0”. Since the mean homogeneous cloud-free 
and cloudy albedos differed slightly from 0.2 and 0.8, 
respectively, the Lambertian model for the appropri- 
ate homogeneous albedos (viz., 0.2046 and 0.8138) 
was run for comparison (see Fig. 12). The main 
differences between the Lambertian and non- 
Lambertian models used here are associated with 
the reflectance differences of the cloudy, as opposed 
to the cloud-free regions. Since the more realistic, 
non-isotropic reflectance models produce larger 
measurements than the corresponding isotropic 
(Lambertian) models, the assumption of a Lam- 
bertian atmosphere will lead to an overestimution of 
the mean earth-atmosphere albedo within the 
radiometer’s field of view. 

In addition to the case illustrated in Fig. 12, a 
comparison between the Lambertian and non- 
Lambertian models was obtained for each of the 
other 0, = 0” cases previously illustrated (viz., 
Figs. 6, 8 and 9). In general, the following conclu- 
sions may be drawn: 1) all essential differences 
between the two reflectance models were associ- 
ated with the cloudy model, with little difference 
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associated with the cloud-free model; 2) the curves 
of regression were always shifted toward larger 
measurements in the non-Lambertian case than in 
the Lambertian case; 3) the line connecting the end 
points of the sample space does not necessarily 
go through the origin; and 4) the differences were 
insignificant in the WFOV cases and of potential im- 
portance in the MFOV cases. The most dramatic 
differences were for the MFOV radiometer on the 
600 km altitude satellite illustrated in Fig. 12. For the 
small local solar zenith angles examined in these 
cases, and for reasonable values of the particulate 
optical depth in the cloud-free atmosphere, the 
effect of the underlying ground on the reflected 
intensity and bidirectional reflectance function is 
very important. If the ground itself has a non- 
Lambertian reflectance, the effects presented here 
would be more dependent on the cloud-free model. 
Koepke and Kriebel(l978) examined the influence 
of measured bidirectional reflectance functions of 
four vegetated surfaces on the radiation reflected 
from a realistic atmosphere. They found that differ- 
ences between anisotropic and isotropic (Lam- 
bertian) ground reflection could reach as much as 
10% at some observation angles when the solar zenith 
angle is small. Although these effects would affect 
the interpretation of earth radiation budget observa- 
tions to some degree, they are generally small 
compared to the cloud effects (cf. Fig. 12). 

To examine the differences between Lambertian 
and non-Lambertian reflectance models for large 
solar zenith angle cases, radiative transfer computa- 
tions were again performed for cloud-free and 
cloudy models separately. In the case of the WFOV 
radiometer on the 600 km satellite when O,, = 80”, 
the terminator crosses the field of view of the 
radiometer. In this case the range of local solar 
zenith angles for which radiative transfer calcula- 
tions are required is 56.7” c $ < 90.0”. Since the albedo 
of the earth-atmosphere system varies significantly 
within this range, it is difficult to a priori estimate 
the parameters of the atmospheric models necessary 
to yield mean homogeneous albedos of 0.2 and 0.8. 
The cloud-free model selected was the same as that 
previously described except that the Mie (particulate) 
optical path was reduced to 7&t = 0.0500 (i.e., T,~, 
+ rR = 0.1447), while the ground albedo was re- 
duced to 0.05. The cloud model differed only in the 
total optical thickness being reduced to T,. = 15.5. 

Fig. 13 illustrates the conditional mean values 
OfFtrue 9 given values of F,,,,, for this case. Since the 
mean homogeneous cloud-free and cloudy albedos 
were different than 0.2 and 0.8, the Lambertian 
model using the appropriate homogeneous albedos 
of 0.2089 and 0.7317 was run for comparison (see 
Fig. 13). In this case, both the cloud free and cloudy 
models contribute to a systematic increase in the 
satellite measurement, but these differences for the 
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FIG. 13. As in Fig. 12 except for the WFOV radiometer on 
the 600 km satellite when 0, = 80”. 

homogeneous scenes are quite small. The resulting 
curves of regression, on the other hand, are suf- 
ficiently different at some values of F,,,, that an 
incorrect assumption of an earth-atmosphere sys- 
tem which reflects radiation isotropically according 
to Lambert’s law could lead to differences in the 
interpretation of the mean albedo. These differences 
are larger for 0, = 80” than for the same satellite 
sensor when 0, = 0”. 

In addition to the 0, = 80” case illustrated in 
Fig. 13, a comparison between Lambertian and non- 
Lambertian models was obtained for the MFOV 
radiometer on the 600 km satellite (see Fig. 14). The 
cloud-free and cloudy models were the same as in 
Fig. 13 but since the range of local solar zenith 
angles is 75” G 8, G 85” for this case, the mean 
homogeneous cloud-free and cloudy albedos were 
again different. The Lambertian model using the 
appropriate homogeneous albedos of 0.2837 and 
0.7876 was thus run for comparison (see Fig. 14). 
The differences between the Lambertian and non- 
Lambertian models are 1) greater for the MFOV 
radiometers than for the WFOV radiometers (cf. 
Figs. 13 and 14) and 2) these differences increase 
with increasing solar zenith angle (cf. Figs. 12 and 
14). These difficulties with the MFOV radiometers 
are a result of the MFOV radiometer sampling only 
the reflected radiation field near the nadir observa- 
tion angles, thus missing the strong forward and 
backward reflection lobes of the bidirectional re- 
flectance pattern. Most of the pi vector elements 
for both the cloud-free and cloudy models are 
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FIG. 14. As in Fig. 12 except for O,, = 80”. Standard deviation 
estimates have not been included due to their small mag- 
nitudes. 

between 0.4 and 0.6 for the O,, = 80” case. The 
WFOV radiometer samples enough elements with 
high values of pi to effectively eliminate this 
bias when the scene is homogeneous (see Fig. 13). 

5. Summary and conclusions 

A statistical model has been developed which 
aids in understanding and bounding the errors 
associated with the transformation of satellite meas- 
urements of the reflected flux density into flux densi- 
ties leaving the top of the atmosphere. This study 
has concentrated on examining the differences 
between the measured flux density (F,,,,) and true 
flux density (F,,,,) for the shortwave component 
of the earth radiation budget as determined from 
nadir viewing, fixed field of view radiometers. These 
differences are shown to be significant when the 
field of view of the radiometer is large and when the 
atmosphere has a nonuniform, or spatially de- 
pendent, reflectance (albedo). In addition to the 
effects of the field of view of the radiometer, this 
investigation has examined the effects of satellite 
altitude and solar zenith angle (including the effects 
of a terminator crossing the field of view of the 
radiometer) for both Lambertian and non-Lambertian 
reflectance models. 

In the simulation experiment which has been 
described, the scene within the field of view of a 
nadir looking satellite sensor has been subdivided 

into a large number of equal-area elements, each of 
which reflects radiation with one of two different 
reflectance models (see Fig. 3). The two models 
which have been used represent 1) cloudy regions 
with high albedos and 2) cloud-free regions with 
much lower albedos. Figs. 6-9 and Fig. 11 illustrate 
the results of using the random positioning of 
isotropically reflecting elements, while Figs. 12- 14 
illustrate the compounded effects of scene inho- 
mogeneity and the angular distribution of the re- 
flected radiation field using realistic angular de- 
pendencies. In all instances it has been assumed that 
the probability of an element being cloudy is equcrf to 
the probability that it is cloud free (i.e., p = 0.5) and 
that this probability is independent of whether its 
neighboring elements are cloudy. Although the im- 
pact of the second of these assumptions is not 
completely known at this time, the first of these 
assumptions leads to the most probable value of Ftrue 
being shifted toward the F,,,, values corresponding 
to 50% cloud cover for the wide field of view 
radiometers (cf. Figs. 6b, 8, 1 lb and 13). The effect, 
of using equal probabilities for the cloudy and cloud- 
free models seems to be of little importance for the 
medium field of view radiometers (cf. Figs. 7, 
9, 12 and 14). 

It is clear on examination of Figs. 7, 9, 12 and 14 
that the effects of a nonuniform planetary albedo 
are quite small for the case of an MFOV radiometer 
whereas the effect of a nonuniform planetary 
albedo in the case of a WFOV radiometer is quite 
significant. Due to the large differences between 
the curves of regression in Figs. 6b, 8, lib and 13 
and the median line through the sample space, it is 
clear that large interpretation errors can arise. The 
fractional cloud cover, cloud-free albedos and cloudy 
albedos within the scene are the dominant con- 
tributors to this difference. Since these are not 
known a priori, it appears to be advantageous to 
make use of auxiliary information, such as that pro- 
vided by a high spatial resolution scanner, in order 
to interpret the WFOV measurements. Additional 
improvement in the interpretation of WFOV ob- 
servations also will arise when considering orbital 
simulations for which there is partial overlap in the 
fields of view of sequential instantaneous measure- 
ments. The effects of overlapping fields of view and 
repeated sampling on the spatial and temporal 
averages of the earth radiation budget have not 
been considered in the present investigation. 

The effects of realistic, non-isotropic reflectance 
models is not of major importance for the WFOV 
radiometers except when the solar zenith angles are 
large and the terminator crosses the IFOV. Non- 
Lambertian effects are of great importance for the 
MFOV radiometers due to the smaller spatial inte- 
gration of the measurements. These differences 
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become increasingly more important as the solar 
zenith angle increases. 
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APPENDIX 

The Evaluation of Vectors A, B, C and D 

In order to derive analytic expressions for the 
elements of vectors A and B, defined by (22) and 
(23), it is necessary to rewrite (9) as 

X(V) = 
b, COS’Q + 26, COW + b, 

2( b, + b, COW)’ ’ 
(Al) 

where 
b, = 1 + l *, (A21 

6, = -2~. (A3) 

Substitution of (Al) into (22) leads to 

i 

a8t’ 
Ai = -%(ci+l - <i) 

b, cos3a + 26, cos*a + 6, cosa 

(b, + 6, COW)* 
d(cosa), (A4) 

01, 

which is clearly a function only of COSCX. By making 
the substitutionx = COW and referring to any stand- ~~ = E(,$+* - LJ Mbo* - b,*) 

ard book of integral tables, it can readily be shown [ b13(bo + b, COW) 

that (b,Z - b,“) 

Ai = -?‘i(ci+l - {i) 
L 

(b, + 6, COSCU)~ 
+ 

b13 
lnlbo + b, cosal 

2b,3 cos%Y - -* 

b,(b, + b, COW) b,(h2 - h2) 

(A6) 1 2b, ai - 
b13 - b13(b0 + b, COW) The evaluation of the elements of vector B can 

(bo* - b,*) a,+, be obtained as follows. Substituting (Al) into (23) 
- 

h3 
In 1 b, + b, COW 1 1 , (AS) leads to 

at Bi = ?h(SiIl&+l - Silll;i)l, (A7) 
where 

which, after rearranging the order of terms, can be 
shown to yield I= 

IX+’ b, CO?CY + 2b, cosa + b, _ 

(b, + b, cosa)’ 
sm’adcu. (A8) 

Due to the presence of sitPar in this expression it is not possible to obtain an integral containing only cos CY 
terms as was done in (A4). Instead it is necessary to make the substitutionx = tan( (w/2) which, after some 
algebraic manipulation, leads to 

I=8 
I 

Sl+~ x*[b,(l - x*)~ + 2b,(l - x2)(1 + x”) + b,(l + x2)‘] dx 
7 

=i (1 + x2)3[(b, + b,) + (b, - b,)x212 
(A9) 

where xi = tan(aJ2) and Xi+, = tan(%+,/2). 
Although (A9) appears more complicated than (A8), the integrand in (A9) can be reduced by the use of 

partial fractions such that (A9) may be rewritten as 

I-; 
I 

XI+, dx 8 

(1 + x2)3 + K 

2;b,f’ - bl”)(bo + b,)* 

I 

XI+, dx + 2(b02 - b,*) 

s$ (1 + x2)2 b13 I 

=‘+I dx 

si (1+x2) 

I 

zi+, dx 
- 

b13 =i [(b, + bd + (6, - b1b212 

2(b,* - b,‘)(bO - bJ2 - 
b13 I 

a+] x*dx 

xi [(bo + b,) + (h - bW’12 * 
(A101 

The individual integrals in this expression may readily be evaluated by making use of a table of integrals. 
Recalling the definition of x = tan( a/2) and further noting that 
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1 +x2= 
2 1978: The annual variation in the global heat balance of 

1 + COW ’ 
(All) the earth. .I. GeoDhvs. Res.. 83. 1958-1962. 

(b, + b,) + (b, - b,)x’ = 
2(b,, + b, cosa) 

1 + COW ’ 
(A 

tan 4 = 
sinff 

1 + COW ’ 
(A 

it can be shown that (A7) reduces to 

Hansen. J. E., 1969:‘Radiative’transfer by doubling very thin 
layers. Astrophys. J., 155, 565-573. 

2) 
-. 1971: Multiple scattering of polarized light in planetary 

atmospheres. Part II: Sunlight reflected by terrestrial water 
clouds. J. Atmos. Sci., 28, 1400-1426. 

Bf = (sinlit - Sin&) 
1 

(2b,’ - b,‘) sin2a 
Cl-- 

4b,” 8b, 

(b,,l - b,2) sinff - _ b,,(b,” - b12) 

3) 
Herman, B. M.. and S. R. Browning, 1965: A numerical solu- 

tion to the equation of radiative transfer. J. Atmos. Sci., 
22, 559-566. 

-3 - and R. J. Curran. 1971: The effect of atmospheric 
aerosols on scattered sunlight. J. Atmos. Sci.. 28, 419-428. 

Hoel, P. G., 1971: Introduction to Mathematical Statistics. 
Wiley, 409 pp. 

Jacobowitz, H., W. L. Smith. H. B. Howell, F. W. Nagle and 
J. R. Hickey, 1979: The first 18 months of planetary radia- 
tton budget measurements from the Nimbus 6 ERB experi- 

2b,’ (b, + 6, COSCY) b,“(b,,s - b,2)L’2 
ment. J. Atmos. Sri., 36, 501-507. 

Junge. C. E., 1955: The size distribution and aging of natural 

x tanp, (6, - b,) tan(G 

[ 11 

at+1 
aerosols as determined from electrical and optical data on 

(A14) the atmosphere. J. Meteor., 12, 13-25. 

(bo2 - b12)1’2 a, ’ King, M. D., and B. M. Herman, 1979: Determination of the 
ground albedo and the index of absorption of atmospheric 

The evaluation of the elements of vectors C and particulates by remote sensing. Part I: Theory. .f. Atmos. 

D, defined by (24) and (23, can readily be obtained 
SC;.. 36, 163-173. 

since neither of these vectors contain the function 
Koepke. P., and K. T. Kriebel. 1978: Influence of measured 

reflection properties of vegetated surfaces on atmosnheric 

x(q). Thus, 

ci = 1/(&+, - <i)(sin”ai+I - sir?q), (A 

Di = (sin<i+I - sir&) . (A 
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